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Abstract

The synthpop package for R (https://www.synthpop.org.uk/) provides tools to al-
low data custodians to create synthetic versions of confidential microdata that can be
distributed with fewer restrictions than the original. The synthesis can be customized to
ensure that relationships evident in the real data are reproduced in the synthetic data.
A number of measures have been proposed to assess this aspect, commonly known as the
utility of the synthetic data. We show that all these measures, including those calculated
from tabulations, can be derived from a propensity score model. The measures will be re-
viewed and compared, and relations between them illustrated. All the measures compared
are highly correlated and some are shown to be identical. The method used to define the
propensity score model is more important than the choice of measure. These measures
and methods are incorporated into utility modules in the synthpop package that include
methods to visualize the results and thus provide immediate feedback to allow the person
creating the synthetic data to improve its quality. The utility functions were originally
designed to be used for synthetic data objects of class synds, created by the synthpop
function syn() or syn.strata(), but they can now be used to compare one or more
synthesised data sets with the original records, where the records are R data frames or
lists of data frames.
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1. Overview

The utility of synthetic data will ultimately be measured by how results from analyses of
synthetic data and the conclusions following from them will differ from those derived from
the real data. It is not advisable to tune synthesis methods to make the results of a specific
analysis agree with those from the original. Details of the final analyses are seldom known
and, even if they were, creating the synthesis to give agreement for an analysis model will
give answers that will agree, but the residuals from the model fitted to the synthetic data
will not give any evidence of model inadequacy that might have been found with the original.
Thus more flexible models that will reflect all the relationships in the data are to be preferred
(see Raab, Nowok, and Dibben 2017a, Section 5 for a discussion of this). There is a need for
measures that compare wider aspects of the differences between the synthetic and original data
to give feedback on the utility of the synthesis. Such measures are termed “broad”, “global”
or “general” utility measures, as opposed to “narrow” or “specific” measures that focus on
the results of particular analyses. We review the wide range of general utility measures that

https://www.synthpop.org.uk/
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have been proposed for synthetic data and the methods used to calculate them. All the
measures discussed can be calculated in the R package synthpop. We present examples and
recommendations of how they can be used in practice.
There are two main reasons we might wish to evaluate the utility of synthetic data:

1. To compare different synthesis methods for the same data set.

2. To diagnose where the original and synthetic data distributions differ and thus tune the
synthesis methods to improve the utility of the synthetic data.

For both of these reasons we recommend the propensity mean squared error (pMSE) as a
utility measure. For the first we advise fitting the propensity score model by a classification
and regression tree (CART) model. The default printed output from all the utility functions
therefore presents only the pMSE measure and its standardized ratio (S_pMSE). All the
other utility measures discussed here and listed in Table 4 in Appendix A are also available
as outputs from the utility functions.
The code below compares two different methods of synthesizing ten variables selected from
SD2011, the survey data that are part of synthpop. The selection is stored in a data frame
ods. The first synthesis uses parametric models1, while the second synthesizes from CART
models. The parameter cont.na for the variable income defines another type of missing value
(coded as -8) to be kept as a separate group. Both the utility evaluations use a propensity
score model fitted by CART and results show that the utility score is more than four times
higher (= worse) for the parametric synthesis compared to the CART synthesis.

R> library("synthpop")
R> ods <- SD2011[, c("sex", "income", "age", "edu" , "socprof", "trust",
+ "height", "weight", "smoke", "region")]
R> syn_para <- syn(ods, method = "parametric", cont.na = list(income = -8),
+ seed = 34567, print.flag = FALSE)
R> syn_cart <- syn(ods, method = "cart", cont.na = list(income = -8),
+ seed = 34567, print.flag = FALSE)
R> u_ods_para <- utility.gen(syn_para, ods, method = "cart",
+ resamp.method = "none", print.flag = FALSE)
R> u_ods_cart <- utility.gen(syn_cart, ods, method = "cart",
+ resamp.method = "none", print.flag = FALSE)
R> cat("\nParametric pMSE ", u_ods_para$pMSE,
+ "\nCART pMSE ", u_ods_cart$pMSE,
+ "\nUtility ratio parametric to CART: ", u_ods_para$pMSE/u_ods_cart$pMSE)

Parametric pMSE 0.03826426
CART pMSE 0.008475425
Utility ratio parametric to CART: 4.51473

1Setting method = "parametric" selects models appropriate to the type of variable. The parameter cont.na
sets -8 as a second type of missing value. The method used for numeric variables uses a transformation to the
expected Normal ranks so as to preserve the univariate distributions for skewed variables.
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To diagnose problem, we recommend visualizing how well the synthetic data preserves rela-
tionships between subsets of the variables, e.g., all one-way, two-way or three-way combina-
tions. The code below visualises utility for all two-way tables from the parametric synthesis,
with five groups created from the non-missing values of continuous variables, and S_pMSE
plotted (Figure 1). It is clear that the variable with the most problems is weight. Section 4
will illustrate further syntheses of these data.

Figure 1: Plot produced from synthesis of ods data by parametric methods.

R> utility.tables(syn_para, ods, tables = "twoway", nworst = 4)

Two-way utility: S_pMSE value plotted for 45 pairs of variables.

Variable combinations with worst 4 utility scores (S_pMSE):
01.sex:08.weight 08.weight:09.smoke 04.edu:08.weight 07.height:08.weight

30.9530 18.4596 15.7308 14.6319
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Medians and maxima of selected utility measures for all tables compared
Medians Maxima

pMSE 0.0013 0.0065
S_pMSE 1.9513 30.9530
df 28.0000 153.0000

These recommendations are based on our practical experiences and on empirical evaluations
that are detailed in the rest of this paper. In Section 2 we present details of all the utility
measures, their performance in evaluating syntheses and the relationships between the mea-
sures. We show that two sets of seemingly unrelated utility measures (one pair and one set of
three) are identical. Section 3 evaluates models that can be used to set up the comparison of
the real and synthetic data from which the utility measures are derived. Section 4 provides
examples of using the utility functions to diagnose problems and tune the synthesis methods
to improve utility. The examples also allow us to introduce some new functionality that has
been added to the synthpop package since its initial description in Nowok, Raab, and Dibben
(2014, 2016). The final Section 5 summarizes the paper and makes suggestions as to possible
future enhancements to these methods.
The functions described in this paper were designed to be used by synthetic data objects of
class synds created by the function syn() or syn.strata(). Since Version 1.7-0 of synthpop
they also work for a synthetic data set (or a list of several data sets) created by other methods.

2. Choice of utility measures
One approach to general utility measures involves combining the original and synthetic records
and measuring how well the data values can predict the source of the records as real or syn-
thetic (Karr, Oganian, Reiter, and Woo 2006; Woo, Reiter, Oganian, and Karr 2009). This
method uses the propensity score, p̂, the predicted probability that a record comes from the
synthetic data. If the synthesis has been carried out from a model that is compatible with
the original data distribution, then the expected mean of p̂ will be c = n2/N , where there
are n1 records from the original data and n2 from the synthetic data and N = n1 + n2.
We refer to the distributions of utility measures in this case as their Null distributions. The
most commonly suggested utility measure is known as the propensity score mean square error
(pMSE). The Null distribution of the pMSE, for prediction models with a fixed number
of parameters has been derived by Snoke, Raab, Nowok, Dibben, and Slavkovic (2018) and
its expectation is dfc(1 − c)2/N , where df is the number of degrees of freedom constrained
by fitting the propensity score model. Other utility measures can also be derived from the
propensity score, e.g. the percentage above 50% of records correctly predicted (PO50) and
the Kolmogorov-Smirnov statistic (SPECKS) which is the maximum distance between the
cumulative distributions functions (CDFs) of the propensity score for the synthetic and origi-
nal distributions (Bowen, Lui, and Su 2021). Further measures that compare p̂ values between
the original and synthetic data could be considered. One such is the Wilcoxon signed-rank
statistic (U).
An alternative approach to utility measures is to group the original and synthetic data,
usually by constructing tables based on their values, and to compute measures of difference
between the tables. Voas and Williamson (2001) investigated measures based on the family
of goodness-of-fit measures discussed by Read and Cressie (1988). They note that the usual
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Pearson χ2 statistic needs to be adjusted because synthetic data may be generated in cells
where the count from the original data is zero. They propose replacing the expected value in
the denominator of the formula with the average of the original and synthetic counts. This
statistic and its generalization when n1 ̸= n2 are designated as V W . Other goodness-of-fit
measures that can be calculated from tables include the the Freeman-Tukey statistic (FT )2,
the Jensen-Shannon divergence (JSD) and the likelihood ratio χ2 statistic (G). The likelihood
ratio has no contributions from cells where the original counts are zero. It would be desirable
for these cells to contribute to utility measures since they may be a substantial proportion
of all cells, especially for sparse tables. Another possible measure derived from tables is the
mean of the absolute differences between the distributions of original and synthetic counts,
designated as MabsDD3. A related quantity is WMabsDD, where the absolute differences
are weighted in proportion to the inverse of the standard deviation of their Null expectations,
so that this measure has a known Null expectation. Yet another measure, the Bhattacharyya
distance (dBhatt), a measure of histogram overlap (Bhattacharyya 1943), has been used for
comparing tables of original and synthetic data by Kaloskampis, Joshi, Cheung, Pugh, and
Nolan (2021).
Corresponding to the two approaches, synthpop provides two functions to calculate utility
measures, utility.gen() and utility.tab(). Comparing tables of original and synthetic
data can be framed as a prediction model, where the propensity score for records in each
cell is the ratio of the synthetic counts to the sum of the original and synthetic counts. For
synthetic data where all variables are categorical, a comparison of n-way tables is equivalent
to fitting a propensity score model by logistic regression including all interactions up to order
n. Thus, any measure defined from the propensity score can also be computed for tables,
but some tabular utility measures do not correspond to measures from the propensity score
approach.
In Table 4 in Appendix A we provide details of all the measures mentioned above; the number
of possible measures in the table is not as many as first appears; the pMSE is just a mul-
tiple of the tabular utility measure V W . dBhatt is a multiple of

√
FT ; the three measures

SPECKS, PO50 and MabsDD are linearly related for most examples. The code below
shows this empirically for the 120 different syntheses from all three-way tables generated by
the parametric synthesis, and the proofs of linearity are in Appendix D.

R> u_3way <- utility.tables(syn_para, ods, tab.stats = "all",
+ tables = "threeway")
R> cors <- cor(u_3way$tabs)
R> cat("Correlations:\nVW with pMSE = ", cors["VW", "pMSE"],
+ ", SPECKS with MabsDD = ", cors["SPECKS", "MabsDD"],
+ ", and SPECKS with PO50 = ", cors["SPECKS", "MabsDD"], "." , sep = "")
R> toplot <- u_3way$tabs[, c(1:4, 6, 5, 7)]
R> dimnames(toplot)[[2]][c(1, 4)] <- c("VW\npMSE", "SPECKS\nMabsDD\nPO50")
R> pairs(toplot)

Correlations:
VW with pMSE = 1, SPECKS with MabsDD = 1, and SPECKS with PO50 = 1.

2This measure is proportional to the discrete Hellinger distance between two distributions.
3Suggested by Christine Task, as used to evaluate the NIST challenges, see here.

https://www.nist.gov/ctl/pscr/open-innovation-prize-challenges/current-and-upcoming-prize-challenges/2020-differential
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The pairs plot from this code is shown as Figure 2. All of correlations exceeding 0.9, with the
exception of those with G. Correlations between V W : pMSE, FT , and JSD, exceed 0.99,
as does that for SPECKS : MabsDD : PO50 with U .

Figure 2: Pairs plot of utility measures for all 120 three-way tables from the synthesis of ods
data by parametric synthesis.

Appendix B gives details of a simulation for up to 6 categorical variables of the power of
each measure to distinguish between a correct synthesis and one where all the variables are
unrelated. The correct synthesis uses a saturated log-linear model, while the incorrect one
uses independent bootstrap samples for each variable. Table 1 summarises the evaluation of
the power of all the statistics that can be calculated by utility.tab(). As expected pMSE,
FT , and JSD all have similar power. The likelihood ratio statistic, G, has similar power for
tables with large expected counts but loses power for sparse tables. The other three measures
have lower power for these examples. The code to generate the results in Table 1 is given in
Appendix B.
One desirable feature of utility measures are that they should be available from propensity
score methods not based on tables and another is a known Null expectation. Only pMSE has
both of these properties. Another advantage of pMSE and WMabsDD is that they can be
standardised from a single synthetic data set. A standardized measure of SPECKS requires
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Mean Median
n V W FT JSD PO50 U WMabsDD G dfa dfa dfGb dfGb

2 39.2 39.4 39.3 16.9 16.1 16.2 39.9 13 13 13 13
3 121.5 129.1 126.8 39.3 42.8 38.1 148.6 69 69 69 69
4 143.9 145.1 149.0 62.8 65.3 58.4 169.5 274 265 292 267
5 254.5 280.4 273.7 121.7 111.8 164.4 61.5 1011 833 2178 771
6 240.5 266.9 258.5 127.5 114.5 185.4 26.3 1576 1229 3556 792
a Effective degrees of freedom is one less than the number of cells in the cross-tabulation

of all variables that contain any original or synthetic counts. This depends on the
synthetic data.

b For computing G only cells with both original and syntheic counts contribute.

Table 1: Empirical power of different utility measures comparing “incorrect” with “correct”
categorical syntheses calculated by utility.tab() with the code given in Appendix B.

a replication method using multiple synthetic data sets (see Appendix A). The measure U
has the poorest power for this example, while the power of G deteriorates for large sparse
tables.

3. Models for the propensity score: practical considerations.

As well as choosing a utility measure, the synthesizer must decide on which model is to
be used to calculate the propensity score. The two possible classes of models are logistic
regression and adaptive classification models such as CART. Within each class, a variety of
models can be specified by defining predictors for logistic models and by altering the methods
and settings of classification models. The three models now available in the utility modules
of synthpop are given in Table 2. All can be computed from utility.gen() but only one
also from utility.tab(). The choices between these models are largely based on practical
considerations, as we discuss below.

Model Description utility.gen() utility.tab()
(a) Saturated logistic Logistic regression with x x

all interactions up to the
number of variables in data

(b) Logistic to order n Logistic regression with all x
interactions up to order n

(c) CART models Classification and regression x
trees

Table 2: Propensity score models implemented in synthpop.

Models of type (a) calculated from utility.tab() are limited by the memory required to
hold large tables and by the fact that large tables can become sparse so that their statistical
properties may be uncertain. The six variables contributing to the evaluation of the Null
models used to calculate results for Table 1 defined a table with 14,000 cells, though only
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3,5004 of the cells contain any counts from either the original or synthetic data. A table of
all 10 variables in the data set ods would contain over 14 million cells although only 0.04%
of them would contain any counts. Memory problems would prevent this method from being
used for 7 or more variables from this data set, and the sparsity of the tables would advise
against using tables of more than 5 variables. To try to fit model (a) via logistic regression
does not help either because it is constrained by its large number of parameters. For the first
5 variables from the ods data set, including all possible interactions, requires a model with
3,500 parameters that failed to converge in several hours of computing time. Thus method
(a) can only be used for a few variables at a time.
Logistic models for data sets with many variables are limited by the number of parameters
required to fit the propensity score model. Using method (b) with the default setting of all
second-order interactions for the 10 variables in ods gives a model with 753 parameters. This
model fitted in under two minutes5. A model with three-level interactions of all variables
would have defined a model with over 7,000 parameters. Models with second-order inter-
actions may have problems especially if they contain factors with many levels. The choice
of model to fit the propensity score for a data set with many variables is between logistic
regression (b), with restrictions on interactions, and a CART model (c). A CART model (c)
requires the use of resampling methods if a standardized measure is required, but only a single
synthetic data set is required and results seem satisfactory (see Appendix C). We have found
that CART models can diagnose differences more easily with fewer computational problems
than logistic models. For a single summary measure to compare syntheses we recommend a
CART propensity score model, with pMSE standardised by a permutation method (see the
example in Section 1).
The choice of model for diagnosing and fixing problems with a synthesis is different. For this
we need a method that will pinpoint the parts of the distribution of synthetic data that differ
from that of the original. It is possible to examine the trees that have been used to calculate
the propensity score from CART models or the coefficients of the propensity score model, but
in practice the effect of individual variables is difficult to identify.
An approach that is much more practical and useful is to examine the agreement between
the synthetic and original data for low-order margins: starting with one-way marginals, then
two-way and perhaps three-way. This approach is illustrated in the next section. A first step
is to calculate utilities from all one-way marginals and compare plots. Since Version 1.7-0
this function also produces a table of utility measures for each one-way table. The code below
gives utility statistics for this example and is an extract from the set of plots produced.

R> compare(syn_para, ods, utility.stats = c("S_pMSE", "df"))

Selected utility measures:
S_pMSE df

sex 0.548971 1
income 1.002243 6
age 1.054993 4
edu 0.355298 4
socprof 0.405301 9

4Median from 10,000 syntheses.
5On a Windows laptop with a 2.30 Ghz processor.
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Figure 3: Extract from the graphical output of compare() used to evaluate by parametric
synthesis of ods.

trust 0.895832 3
height 2.967702 5
weight 52.668412 5
smoke 0.539653 2
region 1.391493 15

The utility measures pinpoint weight as the problem variable, and the plot identifies the
excess of missing values created in the synthetic data as the problem.

4. Using utility measures to tune the synthesis methods.
The synthpop package allows the syntheses to be tuned in various ways to adapt to the needs
of particular data sets. These include:

• Changing the order in which the conditional distributions are formed.

• Stratifying the synthesis by important variables.

• Changing the methods for individual variables.
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• Modifying the predictor matrix to exclude certain variables as predictors of others.

The first two are the ones we have found most useful. We have found the need for the third
and fourth only in special circumstances, one of which we will describe here. Some survey
or administrative data contain very detailed fields that can be grouped into wider classes.
Examples are the classification of occupations or diagnostic codes. The detailed variables
are nested within the wider one. The detailed variables have too many classes to be used
as predictors. To overcome this they need to be synthesised after the wider class and are
given the method "nested". This creates synthetic data for the detailed variable by taking
bootstrap samples within the groups. The prediction matrix needs to be modified to remove
the detailed variable as a predictor of other variables. Details of this and other possible
strategies to improve syntheses are discussed in Raab, Nowok, and Dibben (2017b).
Use of the first two methods is illustrated in the synthesis of ods, first by parametric meth-
ods. In all the examples we have specified the default utility value, the standardised ratio,
S_pMSE, calculated from its expectation for logit models and by a permutation method for
CART models. The target value for this utility model is 1.0, but we do not believe that real
world data is ever generated exactly from a model. Thus we do not calculate any significance
tests. We have found that a useful rule for practical use is to aim for utility ratios below 10.
The first step of evaluating the utility of any synthesis is to compare the univariate distri-
butions for each variable, illustrated for our example in Section 3 and Figure 3. This type
of problem with small categories can happen with variables that are synthesized towards the
end of the list of conditional distributions. This is easily fixed by moving the variable weight
up towards the start of the visit sequence.

R> syn_para2 <- syn(ods, method = "parametric", cont.na = list(income = -8),
+ visit.sequence = c(1, 3, 7:9, 2, 4:6, 10), seed = 34567,
+ print.flag = FALSE)
R> compare(syn_para2, ods, utility.stats = c("S_pMSE", "df"), plot = FALSE)

Selected utility measures:
S_pMSE df

sex 0.548971 1
income 0.429402 6
age 0.878792 4
edu 3.731959 4
socprof 2.289878 9
trust 2.014176 3
height 3.542887 5
weight 0.336572 5
smoke 0.076008 2
region 1.436530 15

With this new order it is now time to investigate the two-way relationships between vari-
ables for the reordered synthesis. Figure 4 (a) to (d) shows the default two-way plots from
utility.tables() from four different syntheses. Note that these plots are all scaled to the
same legend as was generated by the range of utilities in the first synthesis: Figure 1 repro-
duced as Figure 4 (a). Figure 4 (b) shows the two-way plots from the reordered synthesis,
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clearly much better, although with some high values, notably those for interactions with age
where there are some utility values above 10. Stratifying the synthesis by dividing into two
strata, age above and below 55, brings the maximum utility ratio down to below 7 (Figure 4
(c)), but note that had we used CART synthesis with the original ordering (Figure 4 (d)) the
maximum utility ratio would have been below 3.
In this example our preferred CART models did not require any improvement. Large complex
data sets, even synthesized by CART, often require strategies mentioned above to improve
their utility. Stratifying the synthesis by variables known to be of interest in any planned
analyses is a good strategy to ensure relationships will be maintained in the synthetic data.

Figure 4: Plots produced from two-way utility measures for synthesis of ods by parametric
and CART synthesis.

R> syn_para3 <- syn.strata(ods, method = "parametric",
+ strata = ods$age > 55 & !is.na(ods$age), cont.na = list(income = -8),
+ visit.sequence = c(1, 3, 7:9, 2, 4:6, 10), seed = 34567,
+ print.flag = FALSE)
R> u.para <- utility.tables(syn_para, ods, max.scale = 31,
+ plot.title = "(a) parametric synthesis\n")
R> u.para2 <- utility.tables(syn_para2, ods, max.scale = 31,
+ plot.title = "(b) reordered parametric synthesis\n")
R> u.para3 <- utility.tables(syn_para3, ods, max.scale = 31,
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+ plot.title = "(c) reordered and age startified\nparametric synthesis")
R> u.cart <- utility.tables(syn_cart, ods, max.scale = 31,
+ plot.title = "(d) CART synthesis\n")
R> list.plots <- list(u.para$utility.plot, u.para3$utility.plot,
+ u.para2$utility.plot, u.cart$utility.plot)
R> gridExtra::marrangeGrob(list.plots, nrow = 2, ncol = 2,
+ top = "Two-way pMSE ratios")

The function utility.tables() can also calculate utility measures for all three-way tables.
Plots like Figure 1 are produced for three way tables holding one of the variables fixed. This
third variable can be specified by the user. If this is not done then the program selects the
variable with the highest utility score over all tables it contributes to.

5. Conclusion
This paper started life as a simple “how-to-do-it” explanation of the routines we have written
to measure data utility. Documenting them all in detail has led to some unexpected insights
into the utility measures. What is more, it provides a firm foundation for our rules as to how
to proceed to assess the utility of synthetic data and improve its quality. Briefly:

1. To compare the overall utility of two methods of synthesizing the same original data,
you should fit a propensity score model with an adaptive model such as CART and
compare the pMSE measures, calculated by utility.gen(), for the two methods.

2. To judge and improve the utility of a synthesis method:

• Start by visualizing all the one-way tables with compare().
• Next visualize all two-way ratios with utility.tables().
• If all the standardized pMSE ratios are below 10, or better still below 3, it is

probably not necessary to do anything more as the utility seems acceptable.
• At each of the steps above you should try to improve the utility by tuning the

synthesis with stratification and/or by changing the default parameters of syn().

These recommendations have been exemplified on just one example, but we have found similar
results from other data sets. We hope that other synthpop users can try out these functions
on their own data and provide feedback on ways we might improve the utility functions and
the ways they can be used.
Other measures of differences between the original and synthetic data could also be considered.
One such is the discretised earth mover’s distance (EMD) or Wasserstein distance, used for
synthetic data by Grosso, Pichler, and Piantanida (2020). It measures the cost of transporting
the probability mass from one distribution to make it match the second. It requires a cost
function for each pair of cells in the table. If the costs for every pair of cells were the same,
then the EMD would just be the same as the PO50. A measure that gave different costs
would clearly be preferable, especially for ordered categories, but would involve a detailed
specification. Suggestions on how this might be achieved would be welcome. Further metrics
or methods may also be possible and we would welcome suggestions for these.
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Another important aspect of utility is feedback from those to whom the synthetic data are
supplied. One example of this was a synthesis we carried out of dates when children were
excluded from school. By definition these dates need to be weekdays (although this was not
true for a few original records). The synthetic data spread the dates over weekends too. To
overcome this the data would need to be pre-processed to define the variables differently. This
is a different aspect of utility and examples like this are common and as important as the
more formal utility measures discussed here.
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A. Details of utility measures
Table 4 gives details of each of the utility measures mentioned in Section 2, calculated from
propensity score methods by utility.gen() and from tables by utility.tab(), using the
notation given in Table 3.

Notation Description
n1, n2, N Number of records in the original, synthesized, and combined data.
c Proportion of synthesized rows in the combined data = n2/N .
Propensity score methods
ti Indicator variable, i = 1, ..., N , taking the value 1 for rows from

synthetic data and 0 for rows from original data.
df Degrees of freedom constrained by fitting models with a fixed number

of parameters.
p̂i Predicted probabilities, i = 1, ..., N , that row comes from synthetic

data.

Tabular methods
o1, ..., oj , ..., ok Counts of original data in each cell.
s1, ..., sj , ..., sk Counts of synthetic data in each cell.
k Total number of cells in tables to be compared, where oj + sj > 0.
p̂j = sj/(sj + oj) Predicted probability that the (sj + oj) counts in the jth cell are from

the synthetic data.

Table 3: Notation used to describe utility measures.

It is easy to show from the formulae6 in Table 4 that pMSE = V Wc(1 − c)2/N . Note that
the range of values and the Null expectation also correspond. When a table contains cells
where both the original and synthetic counts are zero, the corresponding logistic model will
have its df reduced because some parameters will be aliased.
Table 4 also gives range of possible values and the Null expectation of a model with a fixed
number of parameters for each measure, when the latter is known. Note that the expressions
for the Null expectations apply for large samples. For measures from utility.tab() we
might expect this to apply to each cell of the tables compared. For those derived from
utility.gen() we might expect that it would be sufficient for the residual degrees of freedom
df from the fitted model to be large. This is investigated empirically in Appendix B.
The utility measures can be scaled either by the maximum of their range or by their Null
expectation. In practice most measures give values that are much closer to zero than to the
maximum of their range, so scaling by the maximum gives very small ratios. Scaling by the
Null expectation is more satisfactory. When no expression is available for the Null expectation
then it will need to be computed by replication methods. Where utility measures are being
used to compare altered data that are not created by the type of methods implemented in
synthpop, for example by a method to provide differentially private micro-data, then scaling
by the Null expectation can be considered as utility relative to the stochastic variation about
the model used for the propensity score.

6Calculating V W from tables is equivalent to fitting a saturated logistic model with df = k − 1.
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Measure Formula Null expectation
From propensity score methods
pMSE

∑
i(p̂i − c)2/N dfc(1 − c)2/N

PO50 100 ∑
i [ti(p̂i > c) + (1 − ti)(p̂i < c)]/ ∑(p̂i ̸= c) − 50

SPECKS supe|Ft=0(p̂i) − Ft=1(p̂i)|
U Sum of ranks of p̂i, where ti = 1 in the ordering of p̂i

From tabular methods
V W

∑k,(oj+sj)>0
j=1 [sj − ojc/(1 − c)]2/[c(oj + sj)] k − 1

pMSE
∑

j [(oj + sj)(sj/(oj + sj) − c)2]/N (k − 1)c(1 − c)2/N

G 2 ∑k, oj>0 & sj>0
j=1 {(sj/n2) loge[(sj/n2)/(oj/n1)} k − 1

FT 4 ∑k
j=1 [√sj −

√
ojc/(1 − c)]

2
k − 1

dBhatt

√
1 −

∑k
j=1

√
(sj/n1)(oj/n2)

JSD
∑k

j=1{(sj/n2) log2[2(sj/n2)/((sj/n2) + (oj/n1))] (k − 1)log(2)/(2N)
+(oj/n1) log2[2(oj/n1)/((sj/n2) + (oj/n1))}/2

PO50 100 ∑
j [tj(p̂j >= 0.5) + (1 − tj)(p̂j < 0.5)]/N

SPECKS supe|Foj (p̂j) − Fsj (p̂j)|, where Fw(x) is the
CDF of x weighted by w.

MabsDD
∑k

j=1 |oj/n1 − sj/n2|
WMabsDD

∑k
j=1 |sj − ojn2/n1|/

√
2c(oj + sj)/π k − 1

U Sum of ranks of p̂j weighted by oj in the
ordering of p̂j weighted by oj + sj

Table 4: Utility measures from propensity score methods and from tabular methods.

B. Evaluation of utility measures

The most important aspect of a utility measure is its ability to identify differences between
the synthetic and original data distributions. Another desirable feature is that the measure
should have a known Null expectation that gives the results that would be obtained from a
correct generative model. An empirical study, described below, assesses these two aspects for
the measures given in Table 4, but selecting only one from each set of measures that were
shown in Section 2 to be linearly related.
New methods based on log-linear models were introduced into synthpop from Version 1.5-0.
These models synthesize a group of variables together rather than proceeding via conditional
distributions. There are two choices of model: either a log-linear model specified by its
marginals (method "ipf") or a saturated log-linear model corresponding to a complete cross-
tabulation of all variables (method "catall"). They apply to categorical data, but an option
allows continuous data to be grouped. Because the computations involve creating large tables,
the memory available limits the number of variables that can be included together. When
used as part of a large synthesis these methods are usually used for just the first few important
variables, and other variables then synthesised from conditional distributions. But if synthetic
data are generated from a few categorical variables, all with method "catall", the data will
have been generated from a model that would be “correct” from the perspective of any of the
models (a), (b) or (c) in Table 2. In contrast, we can generate an “incorrect” synthesis from a
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model where there are no relationships between the variables by using the method "sample"
for all variables taking independent bootstrap sample from all values. The difference in the
utilities from an “incorrect” to a “correct” synthesis, scaled by the standard deviation of the
measure from the “correct” synthesis evaluates the power of the utility measure to detect
differences in the distributions.
The code below was used to produce the results for 1,000 syntheses for subsets of variables
from the data ods used in Section 1. Numeric variables in ods were first grouped into cateories
and then data sets consisting of the first n variables, with n ranging from two to six, were
synthesized by two methods: the first using method "catall" for all variables (a “correct”
model) and the second using method "sample" for all variables (a poor model, not attempting
to fit any relationships between variables). Each variant produced 1,000 syntheses. The mean
difference between each utility measure from the poor model and that from the “correct”
model, was calculated and standardized by the standard deviation of the “correct” model.
Results are in Table 1 and discussed in Section 2. As we saw above, the three measures V W ,
FT and JSD have the best power. The measure WMabsDD also has good power, especially
for larger tables. The measures SPECKS : MabsDD : PO50 and U do somewhat less well.
The likelihood ratio G loses power for larger sparse tables due to the relatively few cells that
contribute7. This is an extreme example, ignoring all dependencies between the variables, so
the utility measures are all very high. The same code as given above can be used to compare
the power of syntheses by a CART model with the correct model. For two variables the
power of the utility measures were all zero, because in every case the CART model was able
to reproduce the two-way table. For larger tabulations the empirical power was lower, but
the relative patterns were similar to those in Table 1. For example, for four variables the
empirical power was 16 for pMSE : V W compared to 12 for SPECKS : MabsDD : PO50.

R> m <- 1000
R> ods_cat <- numtocat.syn(ods, cont.na = list(income = -8),
+ style.groups = "quantile", catgroups = 5)$data
R> syn_bad <- syn(ods_cat, method = "sample", print.flag = FALSE, m = m,
+ seed = 12345)
R> calc_power <- function(nvars, m = m) {
+ syn_good <- syn(ods_cat[, 1:nvars], method = "catall",
+ print.flag = FALSE, m = m, seed = 12345)
+ u_good <- utility.tab(syn_good, ods_cat,
+ vars = names(syn_good$syn[[1]]), print.flag = FALSE)
+ u_bad <- utility.tab(syn_bad, ods_cat,
+ vars = names(syn_bad$syn[[1]]), print.flag = FALSE)
+ results_bad <- with(u_bad, data.frame(pMSE, FT, JSD, SPECKS, U,
+ WMabsDD, G, df, dfG))
+ results_good <- with(u_good, data.frame(pMSE, FT, JSD, SPECKS, U,
+ WMabsDD, G, df, dfG))
+ power <- (apply(results_bad[, 1:7], 2, "mean") -
+ apply(results_good[, 1:7], 2, "mean"))/sqrt(apply(results_good[,1:7], 2, "var"))
+ list(power = c(power, df_good = median(results_good[, 8]),
+ dfG_good = median(results_good[, 9]),

7As we can see from dfG in Table 1.
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+ df_bad = median(results_bad[, 8]),
+ dfG_bad = median(results_bad[, 9])),
+ expect = apply(with(u_good, data.frame(S_pMSE, S_FT,
+ S_JSD, S_WMabsDD, S_G)), 2 ,"mean"))
+ }
R> pe <- as.list(2:6)
R> for (i in 2:6) {pe[[i - 1]] <- calc_power(i, m)}
R> table1 <- t(sapply(pe, '[[', "power"))
R> table5 <- t(sapply(pe, '[[', "expect"))

C. Methods for NULL distribution of utility measures
The code in the section above used to produce Table 1 also computes utility measures stan-
dardized by their Null expectation, for those measures where it can be calculated from their
Null expectation. If the Null expectation is valid these should give average values of 1.00.
The results in Table 5 show that most are close enough to 1.00 for practical use but for sparse
tables S_G is underestimated and S_JSD overestimated.

No. of Mean Mean Mean Mean Mean
variables S_pMSE S_FT S_JSD S_WMabsDD S_G

2 1.01 1.01 1.05 1.04 1.01
3 1.01 1.02 1.06 1.01 1.01
4 1.03 1.15 1.12 1.00 0.96
5 1.06 1.51 1.29 1.00 0.82
6 1.06 1.60 1.33 1.00 0.74

Table 5: Average standardised utility measures for a “correct” categorical synthesis calculated
by utility.tab() with the code given above using 1,000 syntheses of each data set.

These results only apply to some measures and for complete syntheses. More importantly,
they require models, such as logit models, with a fixed number of parameters. For adaptive
models such as CART, the expectation must be computed by resampling methods. Snoke
et al. (2018) describe the two possible resampling methods: permuting the propensity score
vector while leaving the indicator variable fixed ("perm") and creating multiple synthetic
data sets and computing the utility from pairs of syntheses ("pairs"). Either method can
be used for the pMSE utility, but for SPECKS, PO50 and U only the pairs method can be
used. The permutation method gives results that are completely wrong for these measures.
This can be understood by realizing that the distribution of these statistics depend on the
propensity score calculations. Just permuting the indices does not produce CDFs where fitting
the propensity score model forces the CDF for the synthetic data to lie above that for the
original. Table 6 gives the results from the code below to evaluate the resampling methods
by the pairs method.

R> calc_power2 <- function(nvars) {
+ syn_good1 <- syn(ods_cat[, 1:nvars], method = "catall", m = 1000,
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No. of S_pMSE : S_V W S_SPECKS : S_MabsDD : PO50 S_U

variables calculateda permutationb pairsc pairsc pairsc

2 1.01 0.88 0.95 1.33 1.98
3 1.01 0.83 0.79 1.24 1.95
4 1.03 0.72 0.71 1.18 1.93
5 1.06 0.66 0.66 1.16 1.91
6 1.06 0.64 0.66 1.15 1.90

a From the 1,000 correct syntheses.
b From 50 permutations of each of 1,000 syntheses.
c From the 1035 pairs from 46 syntheses.

Table 6: Mean standardized utility measures for correct syntheses by different methods.

+ print.flag = FALSE, seed = 12345)
+ u_good1 <- utility.gen(syn_good1, ods_cat[, 1:nvars],
+ vars = names(syn_good1$syn[[1]]), resamp.method = "perm",
+ utility.stats = "S_pMSE", print.flag = FALSE)
+ syn_good2 <- syn(ods_cat[, 1:nvars], method = "catall", m = 46,
+ print.flag = FALSE, seed = 12345)
+ u_good2 <- utility.gen(syn_good2, ods_cat,
+ vars = names(syn_good2$syn[[1]]), resamp.method = "pairs",
+ utility.stats = c("S_pMSE", "S_SPECKS", "S_U"), print.flag = FALSE)
+ table6 <- c(S_pMSE1 = table5[nvars - 1, 1],
+ S_pMSE2 = mean(u_good1$S_pMSE), S_pMSE3 = mean(u_good2$S_pMSE),
+ S_SPECKS = mean(u_good2$S_SPECKS), S_U = mean(u_good2$S_U))
+ }
R> pe <- as.list(2:6)
R> for (i in 2:6) {pe[[i - 1]] <- calc_power2(i)}
R> table6 <- do.call(rbind, pe)

Results from replication methods are clearly less satisfactory than for measures that have a
known Null distribution. However, given that we are mainly interested in diagnosing aspects
of the synthesis with standardised measures above 10, they may not be entirely useless.
These results, taken together, favour our recommendation to use pMSE as the best utility
measure, but with WMabsDD having an equivalent performance. This second measure can
be considered as the L1−norm equivalent of pMSE as an L2−norm, and so may have some
advantage in terms of robustness to outliers.

D. Equivalence of SPECKS, PO50 and MabsDD

This graphical proof of equivalence of SPECKS, PO50 and MabsDD is for the case when the
original and synthesised data sets have the same number of records (N/2). Figure 5 illustrates
CDFs of the propensity scores for the original and synthetic data for a poor synthesis that
does not model the correlations between the variables. The Kolmogorov-Smirnov statistic is
the maximum distance between these CDFs, illustrated here. When both of the CDFs are
evaluated at the same set of points, as is the case here, the maximum distance between the
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Figure 5: Cumulative distributions of propensity scores for the uility evaluation by a CART
model with utility.gen() of a poor synthesis of ods data.

CDFs is at a score value of 0.5. The CDF for the original data at a score of 0.5 is the proportion
of the original data correctly predicted as not being synthetic, and hence the solid red vertical
line is the proportion correct above 0.5. Similarly the green vertical line is the proportion over
0.5 correctly predicted for the synthetic data. The distances on the graph have denominators
of N/2 while PO50 has a denominator of N , so see that SPECKS = 2PO50/100. When
the scores are calculated from tables, the points contributing to the CDFs with scores below
0.5 will refer to table cells where the counts of original records exceeds the synthetic counts.
The opposite is true for scores above 0.5. Thus the MabsDD is exactly twice SPECKS.
These results hold for the original and synthesised data sets that have the same number of
records. We have not yet explored the case of unequal numbers. Also these results may only
be approximate when the score values at which the synthetic and original data are evaluated
do not coincide.
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